Skip to main content

Our laureates

Martin Karplus

2013

“for the development of multiscale models for complex chemical systems.”

Martin Karplus, the Theodore William Richards Professor of Chemistry Emeritus at Harvard, received the 2013 Nobel Prize in chemistry for his research “directed toward understanding the electronic structure, geometry, and dynamics of molecules of chemical and biological interest.” The theoretical chemist, who is also affiliated with Université de Strasbourg, Strasbourg, France, shares the prize with Michael Levitt of Stanford University and Arieh Warshel of the University of Southern California, Los Angeles. Karplus employed semi-empirical quantum mechanics, theoretical and computational statistical mechanics, and classical and quantum dynamics to develop multiscale models for complex chemical systems.

Elias J. Corey

1990

Devised rules that allow scientists to make complex new molecules from ordinary chemicals

Before Corey’s work, organic chemists synthesized compounds through trial and error. Now they use his guidelines to build complex compounds. Fellow Harvard Nobelist Dudley Herschbach has said, “E.J. changed the whole way that chemistry is done . . . his syntheses are like great works of art. Like Beethoven, he takes the equivalent of simple notes and rhythms and puts them together into marvelous creative works.” Corey is Sheldon Emery Professor of Organic Chemistry Emeritus.

Dudley R. Herschbach

1986

Developed techniques enabling scientists to see collisions taking place between pairs of molecules and detect the products of such collisions

A die-hard Red Sox fan, Herschbach describes his research by pitching baseball metaphors. “Think of a crowd at a baseball game. In ordinary chemistry, you have to deal with the whole crowd at once. You observe the general behavior of a crowd of molecules but want to know more about individual molecules. In effect, what we’ve done is eavesdrop on conversations between molecules, as if listening to a pair of people in that crowd.” Herschbach actively promotes the public appreciation and understanding of science, hosting a PBS special on the Nobel Prize, and even appearing in a commercial for Sears Roebuck stores.

Walter Gilbert

1980

Developed methods to work out the structure of DNA

Gilbert discovered a rapid method to decode the base sequences in DNA and then apply this knowledge to induce bacteria to produce medically useful substances, such as insulin and interferon. In 1988, the physicist-turned-biologist called for the scientific community to engage in the “human genome project,” a massive effort to chart, by the year 2000, the entire sequence of DNA that makes up our genetic material. Gilbert is Carl M. Loeb University Professor.

William N. Lipscomb

1976

Research on the structure of boranes, which has increased the understanding of chemical bonding

Lipscomb had had quite a bit of experience by the time he elucidated the unusual chemical make-up of boron – off to college in 1937, he donated his elaborate chemistry set to his high school, doubling the school’s chemistry inventory. The scientist, known for his clarinet playing and Western-style bow ties, describes his mode of reasoning: “I am inclined to make large intuitive jumps and then set about to test the conclusions.” Lipscomb is the Abbott and James Lawrence Professor of Chemistry Emeritus.

Robert Burns Woodward

1965

Laboratory synthesis of complex molecules

Building a large, complicated molecule like chlorophyll is analogous to the construction of a great work of architecture. The Frank Lloyd Wright of organic chemistry, Woodward dominated the field for nearly half a century. His intense devotion to his work is vividly illustrated by the fact that he named a synthetic steroid Christmasterol because it was first crystallized in his laboratory on Christmas day.

T.W. Richards

1914

Research on fixing the atomic weights of chemical elements

Educated at home by his mother, a poet unimpressed by the local public schools, Richards started attending lectures at the University of Pennsylvania when he was 13. At 17 he graduated from college at the head of his class. He became interested in atomic weights (weights of the elements) as a graduate student at Harvard, and eventually discovered and corrected crucial and misleading errors in earlier calculations.